If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+x^2=113
We move all terms to the left:
7x^2+x^2-(113)=0
We add all the numbers together, and all the variables
8x^2-113=0
a = 8; b = 0; c = -113;
Δ = b2-4ac
Δ = 02-4·8·(-113)
Δ = 3616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3616}=\sqrt{16*226}=\sqrt{16}*\sqrt{226}=4\sqrt{226}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{226}}{2*8}=\frac{0-4\sqrt{226}}{16} =-\frac{4\sqrt{226}}{16} =-\frac{\sqrt{226}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{226}}{2*8}=\frac{0+4\sqrt{226}}{16} =\frac{4\sqrt{226}}{16} =\frac{\sqrt{226}}{4} $
| (h+8)^2=0 | | -27=16-p | | (m-3)^2=2m+6 | | 48=–8s | | (x+8)=(4x-43) | | 3x5-6x=4 | | 4(-4b-4)=-96 | | -119=7(1-3x) | | -v+7v=-36 | | 6(8n+7)=-198 | | x^2+3x=3x+10 | | -4(5a+7)=112 | | 15−2(3−2x)=46 | | -2a*5a=-10a | | -2a*5a=10a | | -100=5(7v+1) | | –15n−13=–16n | | 248=-8(-6b-7) | | 8d+6=8d-186 | | 3y-1.8=1/3(-5.4+9y) | | 119=-7(-8k+7) | | 9-3k=-21 | | −43a=12 | | -6+r/2=-4 | | 5x+3=80 | | a+(-17)=-10 | | -20=-3n-5 | | 2(-2x+7)=-7(x+4 | | n/14+10=11 | | x(5+2)=80 | | 5y+7y=25 | | -17+5x=5(x-5)2x-9 |